Evaluate
y^{2}
Expand
y^{2}
Share
Copied to clipboard
2\left(\frac{4}{3}xy+4\left(\frac{1}{9}x^{2}-\frac{1}{3}xy+\frac{1}{4}y^{2}\right)-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{3}x-\frac{1}{2}y\right)^{2}.
2\left(\frac{4}{3}xy+\frac{4}{9}x^{2}-\frac{4}{3}xy+y^{2}-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Use the distributive property to multiply 4 by \frac{1}{9}x^{2}-\frac{1}{3}xy+\frac{1}{4}y^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Combine \frac{4}{3}xy and -\frac{4}{3}xy to get 0.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\left(\frac{2}{3}x\right)^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Consider \left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\left(\frac{2}{3}\right)^{2}x^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Expand \left(\frac{2}{3}x\right)^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\left(\frac{1}{2}\right)^{2}y^{2}\right)\right)-\frac{3}{2}y^{2}
Expand \left(\frac{1}{2}y\right)^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\frac{1}{4}y^{2}\right)\right)-\frac{3}{2}y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
2\left(\frac{4}{9}x^{2}+y^{2}-\frac{4}{9}x^{2}+\frac{1}{4}y^{2}\right)-\frac{3}{2}y^{2}
To find the opposite of \frac{4}{9}x^{2}-\frac{1}{4}y^{2}, find the opposite of each term.
2\left(y^{2}+\frac{1}{4}y^{2}\right)-\frac{3}{2}y^{2}
Combine \frac{4}{9}x^{2} and -\frac{4}{9}x^{2} to get 0.
2\times \frac{5}{4}y^{2}-\frac{3}{2}y^{2}
Combine y^{2} and \frac{1}{4}y^{2} to get \frac{5}{4}y^{2}.
\frac{5}{2}y^{2}-\frac{3}{2}y^{2}
Multiply 2 and \frac{5}{4} to get \frac{5}{2}.
y^{2}
Combine \frac{5}{2}y^{2} and -\frac{3}{2}y^{2} to get y^{2}.
2\left(\frac{4}{3}xy+4\left(\frac{1}{9}x^{2}-\frac{1}{3}xy+\frac{1}{4}y^{2}\right)-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{3}x-\frac{1}{2}y\right)^{2}.
2\left(\frac{4}{3}xy+\frac{4}{9}x^{2}-\frac{4}{3}xy+y^{2}-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Use the distributive property to multiply 4 by \frac{1}{9}x^{2}-\frac{1}{3}xy+\frac{1}{4}y^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right)\right)-\frac{3}{2}y^{2}
Combine \frac{4}{3}xy and -\frac{4}{3}xy to get 0.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\left(\frac{2}{3}x\right)^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Consider \left(\frac{2}{3}x-\frac{1}{2}y\right)\left(\frac{2}{3}x+\frac{1}{2}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\left(\frac{2}{3}\right)^{2}x^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Expand \left(\frac{2}{3}x\right)^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\left(\frac{1}{2}y\right)^{2}\right)\right)-\frac{3}{2}y^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\left(\frac{1}{2}\right)^{2}y^{2}\right)\right)-\frac{3}{2}y^{2}
Expand \left(\frac{1}{2}y\right)^{2}.
2\left(\frac{4}{9}x^{2}+y^{2}-\left(\frac{4}{9}x^{2}-\frac{1}{4}y^{2}\right)\right)-\frac{3}{2}y^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
2\left(\frac{4}{9}x^{2}+y^{2}-\frac{4}{9}x^{2}+\frac{1}{4}y^{2}\right)-\frac{3}{2}y^{2}
To find the opposite of \frac{4}{9}x^{2}-\frac{1}{4}y^{2}, find the opposite of each term.
2\left(y^{2}+\frac{1}{4}y^{2}\right)-\frac{3}{2}y^{2}
Combine \frac{4}{9}x^{2} and -\frac{4}{9}x^{2} to get 0.
2\times \frac{5}{4}y^{2}-\frac{3}{2}y^{2}
Combine y^{2} and \frac{1}{4}y^{2} to get \frac{5}{4}y^{2}.
\frac{5}{2}y^{2}-\frac{3}{2}y^{2}
Multiply 2 and \frac{5}{4} to get \frac{5}{2}.
y^{2}
Combine \frac{5}{2}y^{2} and -\frac{3}{2}y^{2} to get y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}