Solve for a
a=\frac{2\sqrt{57}}{3}-5\approx 0.033222957
a=-\frac{2\sqrt{57}}{3}-5\approx -10.033222957
Share
Copied to clipboard
2=6\left(25+10a+a^{2}\right)-6\times 5^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+a\right)^{2}.
2=150+60a+6a^{2}-6\times 5^{2}
Use the distributive property to multiply 6 by 25+10a+a^{2}.
2=150+60a+6a^{2}-6\times 25
Calculate 5 to the power of 2 and get 25.
2=150+60a+6a^{2}-150
Multiply 6 and 25 to get 150.
2=60a+6a^{2}
Subtract 150 from 150 to get 0.
60a+6a^{2}=2
Swap sides so that all variable terms are on the left hand side.
60a+6a^{2}-2=0
Subtract 2 from both sides.
6a^{2}+60a-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-60±\sqrt{60^{2}-4\times 6\left(-2\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 60 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-60±\sqrt{3600-4\times 6\left(-2\right)}}{2\times 6}
Square 60.
a=\frac{-60±\sqrt{3600-24\left(-2\right)}}{2\times 6}
Multiply -4 times 6.
a=\frac{-60±\sqrt{3600+48}}{2\times 6}
Multiply -24 times -2.
a=\frac{-60±\sqrt{3648}}{2\times 6}
Add 3600 to 48.
a=\frac{-60±8\sqrt{57}}{2\times 6}
Take the square root of 3648.
a=\frac{-60±8\sqrt{57}}{12}
Multiply 2 times 6.
a=\frac{8\sqrt{57}-60}{12}
Now solve the equation a=\frac{-60±8\sqrt{57}}{12} when ± is plus. Add -60 to 8\sqrt{57}.
a=\frac{2\sqrt{57}}{3}-5
Divide -60+8\sqrt{57} by 12.
a=\frac{-8\sqrt{57}-60}{12}
Now solve the equation a=\frac{-60±8\sqrt{57}}{12} when ± is minus. Subtract 8\sqrt{57} from -60.
a=-\frac{2\sqrt{57}}{3}-5
Divide -60-8\sqrt{57} by 12.
a=\frac{2\sqrt{57}}{3}-5 a=-\frac{2\sqrt{57}}{3}-5
The equation is now solved.
2=6\left(25+10a+a^{2}\right)-6\times 5^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+a\right)^{2}.
2=150+60a+6a^{2}-6\times 5^{2}
Use the distributive property to multiply 6 by 25+10a+a^{2}.
2=150+60a+6a^{2}-6\times 25
Calculate 5 to the power of 2 and get 25.
2=150+60a+6a^{2}-150
Multiply 6 and 25 to get 150.
2=60a+6a^{2}
Subtract 150 from 150 to get 0.
60a+6a^{2}=2
Swap sides so that all variable terms are on the left hand side.
6a^{2}+60a=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6a^{2}+60a}{6}=\frac{2}{6}
Divide both sides by 6.
a^{2}+\frac{60}{6}a=\frac{2}{6}
Dividing by 6 undoes the multiplication by 6.
a^{2}+10a=\frac{2}{6}
Divide 60 by 6.
a^{2}+10a=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
a^{2}+10a+5^{2}=\frac{1}{3}+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+10a+25=\frac{1}{3}+25
Square 5.
a^{2}+10a+25=\frac{76}{3}
Add \frac{1}{3} to 25.
\left(a+5\right)^{2}=\frac{76}{3}
Factor a^{2}+10a+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+5\right)^{2}}=\sqrt{\frac{76}{3}}
Take the square root of both sides of the equation.
a+5=\frac{2\sqrt{57}}{3} a+5=-\frac{2\sqrt{57}}{3}
Simplify.
a=\frac{2\sqrt{57}}{3}-5 a=-\frac{2\sqrt{57}}{3}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}