Solve for x (complex solution)
x=-\frac{2}{3\left(j^{2}-2\right)}
j\neq -\sqrt{2}\text{ and }j\neq \sqrt{2}
Solve for x
x=-\frac{2}{3\left(j^{2}-2\right)}
|j|\neq \sqrt{2}
Solve for j (complex solution)
j=-\frac{\sqrt{18-\frac{6}{x}}}{3}
j=\frac{\sqrt{18-\frac{6}{x}}}{3}\text{, }x\neq 0
Solve for j
j=\frac{\sqrt{18-\frac{6}{x}}}{3}
j=-\frac{\sqrt{18-\frac{6}{x}}}{3}\text{, }x\geq \frac{1}{3}\text{ or }x<0
Graph
Share
Copied to clipboard
2=6x-3xj^{2}
Use the distributive property to multiply 3x by 2-j^{2}.
6x-3xj^{2}=2
Swap sides so that all variable terms are on the left hand side.
\left(6-3j^{2}\right)x=2
Combine all terms containing x.
\frac{\left(6-3j^{2}\right)x}{6-3j^{2}}=\frac{2}{6-3j^{2}}
Divide both sides by 6-3j^{2}.
x=\frac{2}{6-3j^{2}}
Dividing by 6-3j^{2} undoes the multiplication by 6-3j^{2}.
x=\frac{2}{3\left(2-j^{2}\right)}
Divide 2 by 6-3j^{2}.
2=6x-3xj^{2}
Use the distributive property to multiply 3x by 2-j^{2}.
6x-3xj^{2}=2
Swap sides so that all variable terms are on the left hand side.
\left(6-3j^{2}\right)x=2
Combine all terms containing x.
\frac{\left(6-3j^{2}\right)x}{6-3j^{2}}=\frac{2}{6-3j^{2}}
Divide both sides by 6-3j^{2}.
x=\frac{2}{6-3j^{2}}
Dividing by 6-3j^{2} undoes the multiplication by 6-3j^{2}.
x=\frac{2}{3\left(2-j^{2}\right)}
Divide 2 by 6-3j^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}