Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+7x+\frac{9}{2}=2
Swap sides so that all variable terms are on the left hand side.
2x^{2}+7x+\frac{9}{2}-2=0
Subtract 2 from both sides.
2x^{2}+7x+\frac{5}{2}=0
Subtract 2 from \frac{9}{2} to get \frac{5}{2}.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times \frac{5}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and \frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times \frac{5}{2}}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\times \frac{5}{2}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49-20}}{2\times 2}
Multiply -8 times \frac{5}{2}.
x=\frac{-7±\sqrt{29}}{2\times 2}
Add 49 to -20.
x=\frac{-7±\sqrt{29}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{29}-7}{4}
Now solve the equation x=\frac{-7±\sqrt{29}}{4} when ± is plus. Add -7 to \sqrt{29}.
x=\frac{-\sqrt{29}-7}{4}
Now solve the equation x=\frac{-7±\sqrt{29}}{4} when ± is minus. Subtract \sqrt{29} from -7.
x=\frac{\sqrt{29}-7}{4} x=\frac{-\sqrt{29}-7}{4}
The equation is now solved.
2x^{2}+7x+\frac{9}{2}=2
Swap sides so that all variable terms are on the left hand side.
2x^{2}+7x=2-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
2x^{2}+7x=-\frac{5}{2}
Subtract \frac{9}{2} from 2 to get -\frac{5}{2}.
\frac{2x^{2}+7x}{2}=-\frac{\frac{5}{2}}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=-\frac{\frac{5}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x=-\frac{5}{4}
Divide -\frac{5}{2} by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{4}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{4}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{29}{16}
Add -\frac{5}{4} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{29}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{29}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{29}}{4} x+\frac{7}{4}=-\frac{\sqrt{29}}{4}
Simplify.
x=\frac{\sqrt{29}-7}{4} x=\frac{-\sqrt{29}-7}{4}
Subtract \frac{7}{4} from both sides of the equation.