Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-24=2
Swap sides so that all variable terms are on the left hand side.
15x^{2}=2+24
Add 24 to both sides.
15x^{2}=26
Add 2 and 24 to get 26.
x^{2}=\frac{26}{15}
Divide both sides by 15.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Take the square root of both sides of the equation.
15x^{2}-24=2
Swap sides so that all variable terms are on the left hand side.
15x^{2}-24-2=0
Subtract 2 from both sides.
15x^{2}-26=0
Subtract 2 from -24 to get -26.
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 0 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
Square 0.
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{0±\sqrt{1560}}{2\times 15}
Multiply -60 times -26.
x=\frac{0±2\sqrt{390}}{2\times 15}
Take the square root of 1560.
x=\frac{0±2\sqrt{390}}{30}
Multiply 2 times 15.
x=\frac{\sqrt{390}}{15}
Now solve the equation x=\frac{0±2\sqrt{390}}{30} when ± is plus.
x=-\frac{\sqrt{390}}{15}
Now solve the equation x=\frac{0±2\sqrt{390}}{30} when ± is minus.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
The equation is now solved.