Solve for x
x=\frac{\sqrt{13}}{2}+2\approx 3.802775638
x=-\frac{\sqrt{13}}{2}+2\approx 0.197224362
Graph
Share
Copied to clipboard
2=-4\left(x^{2}-4x+4\right)+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2=-4x^{2}+16x-16+15
Use the distributive property to multiply -4 by x^{2}-4x+4.
2=-4x^{2}+16x-1
Add -16 and 15 to get -1.
-4x^{2}+16x-1=2
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+16x-1-2=0
Subtract 2 from both sides.
-4x^{2}+16x-3=0
Subtract 2 from -1 to get -3.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
Square 16.
x=\frac{-16±\sqrt{256+16\left(-3\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-16±\sqrt{256-48}}{2\left(-4\right)}
Multiply 16 times -3.
x=\frac{-16±\sqrt{208}}{2\left(-4\right)}
Add 256 to -48.
x=\frac{-16±4\sqrt{13}}{2\left(-4\right)}
Take the square root of 208.
x=\frac{-16±4\sqrt{13}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{13}-16}{-8}
Now solve the equation x=\frac{-16±4\sqrt{13}}{-8} when ± is plus. Add -16 to 4\sqrt{13}.
x=-\frac{\sqrt{13}}{2}+2
Divide -16+4\sqrt{13} by -8.
x=\frac{-4\sqrt{13}-16}{-8}
Now solve the equation x=\frac{-16±4\sqrt{13}}{-8} when ± is minus. Subtract 4\sqrt{13} from -16.
x=\frac{\sqrt{13}}{2}+2
Divide -16-4\sqrt{13} by -8.
x=-\frac{\sqrt{13}}{2}+2 x=\frac{\sqrt{13}}{2}+2
The equation is now solved.
2=-4\left(x^{2}-4x+4\right)+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2=-4x^{2}+16x-16+15
Use the distributive property to multiply -4 by x^{2}-4x+4.
2=-4x^{2}+16x-1
Add -16 and 15 to get -1.
-4x^{2}+16x-1=2
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+16x=2+1
Add 1 to both sides.
-4x^{2}+16x=3
Add 2 and 1 to get 3.
\frac{-4x^{2}+16x}{-4}=\frac{3}{-4}
Divide both sides by -4.
x^{2}+\frac{16}{-4}x=\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-4x=\frac{3}{-4}
Divide 16 by -4.
x^{2}-4x=-\frac{3}{4}
Divide 3 by -4.
x^{2}-4x+\left(-2\right)^{2}=-\frac{3}{4}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{3}{4}+4
Square -2.
x^{2}-4x+4=\frac{13}{4}
Add -\frac{3}{4} to 4.
\left(x-2\right)^{2}=\frac{13}{4}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{13}}{2} x-2=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}}{2}+2 x=-\frac{\sqrt{13}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}