Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{4}x^{2}+\frac{5}{2}x=2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{4}x^{2}+\frac{5}{2}x-2=0
Subtract 2 from both sides.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\left(-2\right)}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, \frac{5}{2} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\left(-\frac{1}{4}\right)\left(-2\right)}}{2\left(-\frac{1}{4}\right)}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-2}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{17}{4}}}{2\left(-\frac{1}{4}\right)}
Add \frac{25}{4} to -2.
x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{17}{4}.
x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{\sqrt{17}-5}{-\frac{1}{2}\times 2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}} when ± is plus. Add -\frac{5}{2} to \frac{\sqrt{17}}{2}.
x=5-\sqrt{17}
Divide \frac{-5+\sqrt{17}}{2} by -\frac{1}{2} by multiplying \frac{-5+\sqrt{17}}{2} by the reciprocal of -\frac{1}{2}.
x=\frac{-\sqrt{17}-5}{-\frac{1}{2}\times 2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{17}}{2} from -\frac{5}{2}.
x=\sqrt{17}+5
Divide \frac{-5-\sqrt{17}}{2} by -\frac{1}{2} by multiplying \frac{-5-\sqrt{17}}{2} by the reciprocal of -\frac{1}{2}.
x=5-\sqrt{17} x=\sqrt{17}+5
The equation is now solved.
-\frac{1}{4}x^{2}+\frac{5}{2}x=2
Swap sides so that all variable terms are on the left hand side.
\frac{-\frac{1}{4}x^{2}+\frac{5}{2}x}{-\frac{1}{4}}=\frac{2}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\frac{\frac{5}{2}}{-\frac{1}{4}}x=\frac{2}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}-10x=\frac{2}{-\frac{1}{4}}
Divide \frac{5}{2} by -\frac{1}{4} by multiplying \frac{5}{2} by the reciprocal of -\frac{1}{4}.
x^{2}-10x=-8
Divide 2 by -\frac{1}{4} by multiplying 2 by the reciprocal of -\frac{1}{4}.
x^{2}-10x+\left(-5\right)^{2}=-8+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-8+25
Square -5.
x^{2}-10x+25=17
Add -8 to 25.
\left(x-5\right)^{2}=17
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x-5=\sqrt{17} x-5=-\sqrt{17}
Simplify.
x=\sqrt{17}+5 x=5-\sqrt{17}
Add 5 to both sides of the equation.