Solve for x
x=\sqrt{5}+1\approx 3.236067977
x=1-\sqrt{5}\approx -1.236067977
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+x+4=2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}x^{2}+x+4-2=0
Subtract 2 from both sides.
-\frac{1}{2}x^{2}+x+2=0
Subtract 2 from 4 to get 2.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 1 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
Square 1.
x=\frac{-1±\sqrt{1+2\times 2}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-1±\sqrt{1+4}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 2.
x=\frac{-1±\sqrt{5}}{2\left(-\frac{1}{2}\right)}
Add 1 to 4.
x=\frac{-1±\sqrt{5}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{5}-1}{-1}
Now solve the equation x=\frac{-1±\sqrt{5}}{-1} when ± is plus. Add -1 to \sqrt{5}.
x=1-\sqrt{5}
Divide -1+\sqrt{5} by -1.
x=\frac{-\sqrt{5}-1}{-1}
Now solve the equation x=\frac{-1±\sqrt{5}}{-1} when ± is minus. Subtract \sqrt{5} from -1.
x=\sqrt{5}+1
Divide -1-\sqrt{5} by -1.
x=1-\sqrt{5} x=\sqrt{5}+1
The equation is now solved.
-\frac{1}{2}x^{2}+x+4=2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}x^{2}+x=2-4
Subtract 4 from both sides.
-\frac{1}{2}x^{2}+x=-2
Subtract 4 from 2 to get -2.
\frac{-\frac{1}{2}x^{2}+x}{-\frac{1}{2}}=-\frac{2}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{1}{-\frac{1}{2}}x=-\frac{2}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-2x=-\frac{2}{-\frac{1}{2}}
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-2x=4
Divide -2 by -\frac{1}{2} by multiplying -2 by the reciprocal of -\frac{1}{2}.
x^{2}-2x+1=4+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=5
Add 4 to 1.
\left(x-1\right)^{2}=5
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-1=\sqrt{5} x-1=-\sqrt{5}
Simplify.
x=\sqrt{5}+1 x=1-\sqrt{5}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}