Solve for a
a = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Share
Copied to clipboard
2=a-4-3a-\left(-1\right)
To find the opposite of 3a-1, find the opposite of each term.
2=a-4-3a+1
The opposite of -1 is 1.
2=-2a-4+1
Combine a and -3a to get -2a.
2=-2a-3
Add -4 and 1 to get -3.
-2a-3=2
Swap sides so that all variable terms are on the left hand side.
-2a=2+3
Add 3 to both sides.
-2a=5
Add 2 and 3 to get 5.
a=\frac{5}{-2}
Divide both sides by -2.
a=-\frac{5}{2}
Fraction \frac{5}{-2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}