Solve for x
x=\frac{\sqrt{2}-3}{2}\approx -0.792893219
x=\frac{-\sqrt{2}-3}{2}\approx -2.207106781
Graph
Share
Copied to clipboard
2=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=2
Swap sides so that all variable terms are on the left hand side.
4x^{2}+12x+9-2=0
Subtract 2 from both sides.
4x^{2}+12x+7=0
Subtract 2 from 9 to get 7.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 7}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 7}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\times 7}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144-112}}{2\times 4}
Multiply -16 times 7.
x=\frac{-12±\sqrt{32}}{2\times 4}
Add 144 to -112.
x=\frac{-12±4\sqrt{2}}{2\times 4}
Take the square root of 32.
x=\frac{-12±4\sqrt{2}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{2}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{2}}{8} when ± is plus. Add -12 to 4\sqrt{2}.
x=\frac{\sqrt{2}-3}{2}
Divide -12+4\sqrt{2} by 8.
x=\frac{-4\sqrt{2}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{2}}{8} when ± is minus. Subtract 4\sqrt{2} from -12.
x=\frac{-\sqrt{2}-3}{2}
Divide -12-4\sqrt{2} by 8.
x=\frac{\sqrt{2}-3}{2} x=\frac{-\sqrt{2}-3}{2}
The equation is now solved.
2=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=2
Swap sides so that all variable terms are on the left hand side.
4x^{2}+12x=2-9
Subtract 9 from both sides.
4x^{2}+12x=-7
Subtract 9 from 2 to get -7.
\frac{4x^{2}+12x}{4}=-\frac{7}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=-\frac{7}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=-\frac{7}{4}
Divide 12 by 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{-7+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{1}{2}
Add -\frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{2}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{2}}{2} x+\frac{3}{2}=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}-3}{2} x=\frac{-\sqrt{2}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}