Solve for q
q=\frac{\sqrt{6}}{2}+1\approx 2.224744871
q=-\frac{\sqrt{6}}{2}+1\approx -0.224744871
Share
Copied to clipboard
2=1-4q+4q^{2}-2q^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2q\right)^{2}.
2=1-4q+2q^{2}
Combine 4q^{2} and -2q^{2} to get 2q^{2}.
1-4q+2q^{2}=2
Swap sides so that all variable terms are on the left hand side.
1-4q+2q^{2}-2=0
Subtract 2 from both sides.
-1-4q+2q^{2}=0
Subtract 2 from 1 to get -1.
2q^{2}-4q-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-1\right)}}{2\times 2}
Square -4.
q=\frac{-\left(-4\right)±\sqrt{16-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
q=\frac{-\left(-4\right)±\sqrt{16+8}}{2\times 2}
Multiply -8 times -1.
q=\frac{-\left(-4\right)±\sqrt{24}}{2\times 2}
Add 16 to 8.
q=\frac{-\left(-4\right)±2\sqrt{6}}{2\times 2}
Take the square root of 24.
q=\frac{4±2\sqrt{6}}{2\times 2}
The opposite of -4 is 4.
q=\frac{4±2\sqrt{6}}{4}
Multiply 2 times 2.
q=\frac{2\sqrt{6}+4}{4}
Now solve the equation q=\frac{4±2\sqrt{6}}{4} when ± is plus. Add 4 to 2\sqrt{6}.
q=\frac{\sqrt{6}}{2}+1
Divide 4+2\sqrt{6} by 4.
q=\frac{4-2\sqrt{6}}{4}
Now solve the equation q=\frac{4±2\sqrt{6}}{4} when ± is minus. Subtract 2\sqrt{6} from 4.
q=-\frac{\sqrt{6}}{2}+1
Divide 4-2\sqrt{6} by 4.
q=\frac{\sqrt{6}}{2}+1 q=-\frac{\sqrt{6}}{2}+1
The equation is now solved.
2=1-4q+4q^{2}-2q^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2q\right)^{2}.
2=1-4q+2q^{2}
Combine 4q^{2} and -2q^{2} to get 2q^{2}.
1-4q+2q^{2}=2
Swap sides so that all variable terms are on the left hand side.
-4q+2q^{2}=2-1
Subtract 1 from both sides.
-4q+2q^{2}=1
Subtract 1 from 2 to get 1.
2q^{2}-4q=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2q^{2}-4q}{2}=\frac{1}{2}
Divide both sides by 2.
q^{2}+\left(-\frac{4}{2}\right)q=\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
q^{2}-2q=\frac{1}{2}
Divide -4 by 2.
q^{2}-2q+1=\frac{1}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-2q+1=\frac{3}{2}
Add \frac{1}{2} to 1.
\left(q-1\right)^{2}=\frac{3}{2}
Factor q^{2}-2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
q-1=\frac{\sqrt{6}}{2} q-1=-\frac{\sqrt{6}}{2}
Simplify.
q=\frac{\sqrt{6}}{2}+1 q=-\frac{\sqrt{6}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}