Solve for q
q=-5
Share
Copied to clipboard
4q\left(q+1\right)=\left(q+1\right)\times 5+2q\times 2q
Variable q cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by 2q\left(q+1\right), the least common multiple of 2q,q+1.
4q\left(q+1\right)=\left(q+1\right)\times 5+\left(2q\right)^{2}
Multiply 2q and 2q to get \left(2q\right)^{2}.
4q^{2}+4q=\left(q+1\right)\times 5+\left(2q\right)^{2}
Use the distributive property to multiply 4q by q+1.
4q^{2}+4q=5q+5+\left(2q\right)^{2}
Use the distributive property to multiply q+1 by 5.
4q^{2}+4q=5q+5+2^{2}q^{2}
Expand \left(2q\right)^{2}.
4q^{2}+4q=5q+5+4q^{2}
Calculate 2 to the power of 2 and get 4.
4q^{2}+4q-5q=5+4q^{2}
Subtract 5q from both sides.
4q^{2}-q=5+4q^{2}
Combine 4q and -5q to get -q.
4q^{2}-q-4q^{2}=5
Subtract 4q^{2} from both sides.
-q=5
Combine 4q^{2} and -4q^{2} to get 0.
q=-5
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}