Solve for a
a=2\left(\sqrt{266}+8\right)\approx 48.619012861
Share
Copied to clipboard
2=\frac{-60+11+33+a}{\sqrt{12^{2}+11^{2}+1}}
Multiply -5 and 12 to get -60. Multiply 11 and 3 to get 33.
2=\frac{-49+33+a}{\sqrt{12^{2}+11^{2}+1}}
Add -60 and 11 to get -49.
2=\frac{-16+a}{\sqrt{12^{2}+11^{2}+1}}
Add -49 and 33 to get -16.
2=\frac{-16+a}{\sqrt{144+11^{2}+1}}
Calculate 12 to the power of 2 and get 144.
2=\frac{-16+a}{\sqrt{144+121+1}}
Calculate 11 to the power of 2 and get 121.
2=\frac{-16+a}{\sqrt{265+1}}
Add 144 and 121 to get 265.
2=\frac{-16+a}{\sqrt{266}}
Add 265 and 1 to get 266.
2=\frac{\left(-16+a\right)\sqrt{266}}{\left(\sqrt{266}\right)^{2}}
Rationalize the denominator of \frac{-16+a}{\sqrt{266}} by multiplying numerator and denominator by \sqrt{266}.
2=\frac{\left(-16+a\right)\sqrt{266}}{266}
The square of \sqrt{266} is 266.
2=\frac{-16\sqrt{266}+a\sqrt{266}}{266}
Use the distributive property to multiply -16+a by \sqrt{266}.
\frac{-16\sqrt{266}+a\sqrt{266}}{266}=2
Swap sides so that all variable terms are on the left hand side.
-16\sqrt{266}+a\sqrt{266}=2\times 266
Multiply both sides by 266.
-16\sqrt{266}+a\sqrt{266}=532
Multiply 2 and 266 to get 532.
a\sqrt{266}=532+16\sqrt{266}
Add 16\sqrt{266} to both sides.
\sqrt{266}a=16\sqrt{266}+532
The equation is in standard form.
\frac{\sqrt{266}a}{\sqrt{266}}=\frac{16\sqrt{266}+532}{\sqrt{266}}
Divide both sides by \sqrt{266}.
a=\frac{16\sqrt{266}+532}{\sqrt{266}}
Dividing by \sqrt{266} undoes the multiplication by \sqrt{266}.
a=2\sqrt{266}+16
Divide 532+16\sqrt{266} by \sqrt{266}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}