Solve for a
a=\frac{2c}{3}
c\neq 0
Solve for c
c=\frac{3a}{2}
a\neq 0
Share
Copied to clipboard
c\times \frac{2}{3}=6\times \frac{a}{6}
Multiply both sides of the equation by 6c, the least common multiple of 6,c.
c\times \frac{2}{3}=\frac{6a}{6}
Express 6\times \frac{a}{6} as a single fraction.
c\times \frac{2}{3}=a
Cancel out 6 and 6.
a=c\times \frac{2}{3}
Swap sides so that all variable terms are on the left hand side.
c\times \frac{2}{3}=6\times \frac{a}{6}
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6c, the least common multiple of 6,c.
c\times \frac{2}{3}=\frac{6a}{6}
Express 6\times \frac{a}{6} as a single fraction.
c\times \frac{2}{3}=a
Cancel out 6 and 6.
\frac{2}{3}c=a
The equation is in standard form.
\frac{\frac{2}{3}c}{\frac{2}{3}}=\frac{a}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
c=\frac{a}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
c=\frac{3a}{2}
Divide a by \frac{2}{3} by multiplying a by the reciprocal of \frac{2}{3}.
c=\frac{3a}{2}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}