Evaluate
\frac{17}{2}=8.5
Factor
\frac{17}{2} = 8\frac{1}{2} = 8.5
Share
Copied to clipboard
\frac{\frac{2\left(42-38+2\right)}{16}\times 12}{\frac{24}{6}}\times 2+4
Divide 2 by \frac{16}{42-38+2} by multiplying 2 by the reciprocal of \frac{16}{42-38+2}.
\frac{\frac{2\left(4+2\right)}{16}\times 12}{\frac{24}{6}}\times 2+4
Subtract 38 from 42 to get 4.
\frac{\frac{2\times 6}{16}\times 12}{\frac{24}{6}}\times 2+4
Add 4 and 2 to get 6.
\frac{\frac{12}{16}\times 12}{\frac{24}{6}}\times 2+4
Multiply 2 and 6 to get 12.
\frac{\frac{3}{4}\times 12}{\frac{24}{6}}\times 2+4
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
\frac{\frac{3\times 12}{4}}{\frac{24}{6}}\times 2+4
Express \frac{3}{4}\times 12 as a single fraction.
\frac{\frac{36}{4}}{\frac{24}{6}}\times 2+4
Multiply 3 and 12 to get 36.
\frac{9}{\frac{24}{6}}\times 2+4
Divide 36 by 4 to get 9.
\frac{9}{4}\times 2+4
Divide 24 by 6 to get 4.
\frac{9\times 2}{4}+4
Express \frac{9}{4}\times 2 as a single fraction.
\frac{18}{4}+4
Multiply 9 and 2 to get 18.
\frac{9}{2}+4
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{9}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
\frac{9+8}{2}
Since \frac{9}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{17}{2}
Add 9 and 8 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}