Solve for y
y = \frac{\sqrt{3} + 1}{2} \approx 1.366025404
y=\frac{1-\sqrt{3}}{2}\approx -0.366025404
Graph
Share
Copied to clipboard
2+y-3y^{2}=y\left(y-3\right)
Use the distributive property to multiply y by 1-3y.
2+y-3y^{2}=y^{2}-3y
Use the distributive property to multiply y by y-3.
2+y-3y^{2}-y^{2}=-3y
Subtract y^{2} from both sides.
2+y-4y^{2}=-3y
Combine -3y^{2} and -y^{2} to get -4y^{2}.
2+y-4y^{2}+3y=0
Add 3y to both sides.
2+4y-4y^{2}=0
Combine y and 3y to get 4y.
-4y^{2}+4y+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-4\right)\times 2}}{2\left(-4\right)}
Square 4.
y=\frac{-4±\sqrt{16+16\times 2}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-4±\sqrt{16+32}}{2\left(-4\right)}
Multiply 16 times 2.
y=\frac{-4±\sqrt{48}}{2\left(-4\right)}
Add 16 to 32.
y=\frac{-4±4\sqrt{3}}{2\left(-4\right)}
Take the square root of 48.
y=\frac{-4±4\sqrt{3}}{-8}
Multiply 2 times -4.
y=\frac{4\sqrt{3}-4}{-8}
Now solve the equation y=\frac{-4±4\sqrt{3}}{-8} when ± is plus. Add -4 to 4\sqrt{3}.
y=\frac{1-\sqrt{3}}{2}
Divide -4+4\sqrt{3} by -8.
y=\frac{-4\sqrt{3}-4}{-8}
Now solve the equation y=\frac{-4±4\sqrt{3}}{-8} when ± is minus. Subtract 4\sqrt{3} from -4.
y=\frac{\sqrt{3}+1}{2}
Divide -4-4\sqrt{3} by -8.
y=\frac{1-\sqrt{3}}{2} y=\frac{\sqrt{3}+1}{2}
The equation is now solved.
2+y-3y^{2}=y\left(y-3\right)
Use the distributive property to multiply y by 1-3y.
2+y-3y^{2}=y^{2}-3y
Use the distributive property to multiply y by y-3.
2+y-3y^{2}-y^{2}=-3y
Subtract y^{2} from both sides.
2+y-4y^{2}=-3y
Combine -3y^{2} and -y^{2} to get -4y^{2}.
2+y-4y^{2}+3y=0
Add 3y to both sides.
2+4y-4y^{2}=0
Combine y and 3y to get 4y.
4y-4y^{2}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
-4y^{2}+4y=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4y^{2}+4y}{-4}=-\frac{2}{-4}
Divide both sides by -4.
y^{2}+\frac{4}{-4}y=-\frac{2}{-4}
Dividing by -4 undoes the multiplication by -4.
y^{2}-y=-\frac{2}{-4}
Divide 4 by -4.
y^{2}-y=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-y+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-y+\frac{1}{4}=\frac{3}{4}
Add \frac{1}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{2}\right)^{2}=\frac{3}{4}
Factor y^{2}-y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Take the square root of both sides of the equation.
y-\frac{1}{2}=\frac{\sqrt{3}}{2} y-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Simplify.
y=\frac{\sqrt{3}+1}{2} y=\frac{1-\sqrt{3}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}