Evaluate
\frac{161}{40}=4.025
Factor
\frac{7 \cdot 23}{2 ^ {3} \cdot 5} = 4\frac{1}{40} = 4.025
Share
Copied to clipboard
2+\frac{9\times 2}{5}\times \frac{9}{8}\times \frac{5}{10}
Express 9\times \frac{2}{5} as a single fraction.
2+\frac{18}{5}\times \frac{9}{8}\times \frac{5}{10}
Multiply 9 and 2 to get 18.
2+\frac{18\times 9}{5\times 8}\times \frac{5}{10}
Multiply \frac{18}{5} times \frac{9}{8} by multiplying numerator times numerator and denominator times denominator.
2+\frac{162}{40}\times \frac{5}{10}
Do the multiplications in the fraction \frac{18\times 9}{5\times 8}.
2+\frac{81}{20}\times \frac{5}{10}
Reduce the fraction \frac{162}{40} to lowest terms by extracting and canceling out 2.
2+\frac{81}{20}\times \frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
2+\frac{81\times 1}{20\times 2}
Multiply \frac{81}{20} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2+\frac{81}{40}
Do the multiplications in the fraction \frac{81\times 1}{20\times 2}.
\frac{80}{40}+\frac{81}{40}
Convert 2 to fraction \frac{80}{40}.
\frac{80+81}{40}
Since \frac{80}{40} and \frac{81}{40} have the same denominator, add them by adding their numerators.
\frac{161}{40}
Add 80 and 81 to get 161.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}