Evaluate
\frac{1703}{72}\approx 23.652777778
Factor
\frac{13 \cdot 131}{2 ^ {3} \cdot 3 ^ {2}} = 23\frac{47}{72} = 23.65277777777778
Share
Copied to clipboard
2+7\left(\frac{6}{6}+\frac{1}{6}\right)\left(2+\frac{2}{3}\right)-\frac{1}{8}
Convert 1 to fraction \frac{6}{6}.
2+7\times \frac{6+1}{6}\left(2+\frac{2}{3}\right)-\frac{1}{8}
Since \frac{6}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
2+7\times \frac{7}{6}\left(2+\frac{2}{3}\right)-\frac{1}{8}
Add 6 and 1 to get 7.
2+\frac{7\times 7}{6}\left(2+\frac{2}{3}\right)-\frac{1}{8}
Express 7\times \frac{7}{6} as a single fraction.
2+\frac{49}{6}\left(2+\frac{2}{3}\right)-\frac{1}{8}
Multiply 7 and 7 to get 49.
2+\frac{49}{6}\left(\frac{6}{3}+\frac{2}{3}\right)-\frac{1}{8}
Convert 2 to fraction \frac{6}{3}.
2+\frac{49}{6}\times \frac{6+2}{3}-\frac{1}{8}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
2+\frac{49}{6}\times \frac{8}{3}-\frac{1}{8}
Add 6 and 2 to get 8.
2+\frac{49\times 8}{6\times 3}-\frac{1}{8}
Multiply \frac{49}{6} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
2+\frac{392}{18}-\frac{1}{8}
Do the multiplications in the fraction \frac{49\times 8}{6\times 3}.
2+\frac{196}{9}-\frac{1}{8}
Reduce the fraction \frac{392}{18} to lowest terms by extracting and canceling out 2.
\frac{18}{9}+\frac{196}{9}-\frac{1}{8}
Convert 2 to fraction \frac{18}{9}.
\frac{18+196}{9}-\frac{1}{8}
Since \frac{18}{9} and \frac{196}{9} have the same denominator, add them by adding their numerators.
\frac{214}{9}-\frac{1}{8}
Add 18 and 196 to get 214.
\frac{1712}{72}-\frac{9}{72}
Least common multiple of 9 and 8 is 72. Convert \frac{214}{9} and \frac{1}{8} to fractions with denominator 72.
\frac{1712-9}{72}
Since \frac{1712}{72} and \frac{9}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{1703}{72}
Subtract 9 from 1712 to get 1703.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}