Solve for x
x=\frac{5e+1}{5e-6}\approx 1.922094946
Graph
Share
Copied to clipboard
2+3\left(x-3x-1\right)=5\left(x-\left(2x-1\right)\right)e
To find the opposite of 3x+1, find the opposite of each term.
2+3\left(-2x-1\right)=5\left(x-\left(2x-1\right)\right)e
Combine x and -3x to get -2x.
2-6x-3=5\left(x-\left(2x-1\right)\right)e
Use the distributive property to multiply 3 by -2x-1.
-1-6x=5\left(x-\left(2x-1\right)\right)e
Subtract 3 from 2 to get -1.
-1-6x=5\left(x-2x-\left(-1\right)\right)e
To find the opposite of 2x-1, find the opposite of each term.
-1-6x=5\left(x-2x+1\right)e
The opposite of -1 is 1.
-1-6x=5\left(-x+1\right)e
Combine x and -2x to get -x.
-1-6x=\left(-5x+5\right)e
Use the distributive property to multiply 5 by -x+1.
-1-6x=-5xe+5e
Use the distributive property to multiply -5x+5 by e.
-1-6x+5xe=5e
Add 5xe to both sides.
-6x+5xe=5e+1
Add 1 to both sides.
\left(-6+5e\right)x=5e+1
Combine all terms containing x.
\left(5e-6\right)x=5e+1
The equation is in standard form.
\frac{\left(5e-6\right)x}{5e-6}=\frac{5e+1}{5e-6}
Divide both sides by -6+5e.
x=\frac{5e+1}{5e-6}
Dividing by -6+5e undoes the multiplication by -6+5e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}