Solve for z
z=\frac{53}{26}+\frac{47}{26}i\approx 2.038461538+1.807692308i
Share
Copied to clipboard
\left(5-i\right)z+2-14-7i=0
Combine the real and imaginary parts in 2-14-7i.
\left(5-i\right)z-12-7i=0
Add 2 to -14.
\left(5-i\right)z-7i=12
Add 12 to both sides. Anything plus zero gives itself.
\left(5-i\right)z=12+7i
Add 7i to both sides.
z=\frac{12+7i}{5-i}
Divide both sides by 5-i.
z=\frac{\left(12+7i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator of \frac{12+7i}{5-i} by the complex conjugate of the denominator, 5+i.
z=\frac{\left(12+7i\right)\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(12+7i\right)\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{12\times 5+12i+7i\times 5+7i^{2}}{26}
Multiply complex numbers 12+7i and 5+i like you multiply binomials.
z=\frac{12\times 5+12i+7i\times 5+7\left(-1\right)}{26}
By definition, i^{2} is -1.
z=\frac{60+12i+35i-7}{26}
Do the multiplications in 12\times 5+12i+7i\times 5+7\left(-1\right).
z=\frac{60-7+\left(12+35\right)i}{26}
Combine the real and imaginary parts in 60+12i+35i-7.
z=\frac{53+47i}{26}
Do the additions in 60-7+\left(12+35\right)i.
z=\frac{53}{26}+\frac{47}{26}i
Divide 53+47i by 26 to get \frac{53}{26}+\frac{47}{26}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}