Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(5-i\right)z+2-14-7i=0
Combine the real and imaginary parts in 2-14-7i.
\left(5-i\right)z-12-7i=0
Add 2 to -14.
\left(5-i\right)z-7i=12
Add 12 to both sides. Anything plus zero gives itself.
\left(5-i\right)z=12+7i
Add 7i to both sides.
z=\frac{12+7i}{5-i}
Divide both sides by 5-i.
z=\frac{\left(12+7i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator of \frac{12+7i}{5-i} by the complex conjugate of the denominator, 5+i.
z=\frac{\left(12+7i\right)\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(12+7i\right)\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{12\times 5+12i+7i\times 5+7i^{2}}{26}
Multiply complex numbers 12+7i and 5+i like you multiply binomials.
z=\frac{12\times 5+12i+7i\times 5+7\left(-1\right)}{26}
By definition, i^{2} is -1.
z=\frac{60+12i+35i-7}{26}
Do the multiplications in 12\times 5+12i+7i\times 5+7\left(-1\right).
z=\frac{60-7+\left(12+35\right)i}{26}
Combine the real and imaginary parts in 60+12i+35i-7.
z=\frac{53+47i}{26}
Do the additions in 60-7+\left(12+35\right)i.
z=\frac{53}{26}+\frac{47}{26}i
Divide 53+47i by 26 to get \frac{53}{26}+\frac{47}{26}i.