Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x+\frac{1}{2}\right)^{2}=0.25-2
Subtracting 2 from itself leaves 0.
\left(-x+\frac{1}{2}\right)^{2}=-1.75
Subtract 2 from 0.25.
-x+\frac{1}{2}=\frac{\sqrt{7}i}{2} -x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Take the square root of both sides of the equation.
-x+\frac{1}{2}-\frac{1}{2}=\frac{\sqrt{7}i}{2}-\frac{1}{2} -x+\frac{1}{2}-\frac{1}{2}=-\frac{\sqrt{7}i}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
-x=\frac{\sqrt{7}i}{2}-\frac{1}{2} -x=-\frac{\sqrt{7}i}{2}-\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
-x=\frac{-1+\sqrt{7}i}{2}
Subtract \frac{1}{2} from \frac{i\sqrt{7}}{2}.
-x=\frac{-\sqrt{7}i-1}{2}
Subtract \frac{1}{2} from -\frac{i\sqrt{7}}{2}.
\frac{-x}{-1}=\frac{-1+\sqrt{7}i}{-2} \frac{-x}{-1}=\frac{-\sqrt{7}i-1}{-2}
Divide both sides by -1.
x=\frac{-1+\sqrt{7}i}{-2} x=\frac{-\sqrt{7}i-1}{-2}
Dividing by -1 undoes the multiplication by -1.
x=\frac{-\sqrt{7}i+1}{2}
Divide \frac{i\sqrt{7}-1}{2} by -1.
x=\frac{1+\sqrt{7}i}{2}
Divide \frac{-i\sqrt{7}-1}{2} by -1.
x=\frac{-\sqrt{7}i+1}{2} x=\frac{1+\sqrt{7}i}{2}
The equation is now solved.