Evaluate
\frac{4\sqrt{1295}}{185}+2\approx 2.77807802
Share
Copied to clipboard
2+\sqrt{\frac{\frac{5}{5}-\frac{1}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{4}{5}\times \frac{10}{3}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Convert 1 to fraction \frac{5}{5}.
2+\sqrt{\frac{\frac{5-1}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{4}{5}\times \frac{10}{3}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{4}{5}\times \frac{10}{3}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Subtract 1 from 5 to get 4.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{4\times 10}{5\times 3}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Multiply \frac{4}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{40}{15}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Do the multiplications in the fraction \frac{4\times 10}{5\times 3}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{8}{3}+2}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Reduce the fraction \frac{40}{15} to lowest terms by extracting and canceling out 5.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{8}{3}+\frac{6}{3}}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Convert 2 to fraction \frac{6}{3}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{8+6}{3}}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Since \frac{8}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{\frac{1}{6}}{\frac{14}{3}}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Add 8 and 6 to get 14.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{1}{6}\times \frac{3}{14}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Divide \frac{1}{6} by \frac{14}{3} by multiplying \frac{1}{6} by the reciprocal of \frac{14}{3}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{1\times 3}{6\times 14}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Multiply \frac{1}{6} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{3}{84}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Do the multiplications in the fraction \frac{1\times 3}{6\times 14}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{3}{2}-\frac{1}{28}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Reduce the fraction \frac{3}{84} to lowest terms by extracting and canceling out 3.
2+\sqrt{\frac{\frac{4}{5}}{\frac{42}{28}-\frac{1}{28}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Least common multiple of 2 and 28 is 28. Convert \frac{3}{2} and \frac{1}{28} to fractions with denominator 28.
2+\sqrt{\frac{\frac{4}{5}}{\frac{42-1}{28}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Since \frac{42}{28} and \frac{1}{28} have the same denominator, subtract them by subtracting their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(10-\frac{\frac{5}{8}}{\frac{25}{24}}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Subtract 1 from 42 to get 41.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(10-\frac{5}{8}\times \frac{24}{25}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Divide \frac{5}{8} by \frac{25}{24} by multiplying \frac{5}{8} by the reciprocal of \frac{25}{24}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(10-\frac{5\times 24}{8\times 25}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Multiply \frac{5}{8} times \frac{24}{25} by multiplying numerator times numerator and denominator times denominator.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(10-\frac{120}{200}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Do the multiplications in the fraction \frac{5\times 24}{8\times 25}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(10-\frac{3}{5}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Reduce the fraction \frac{120}{200} to lowest terms by extracting and canceling out 40.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(\frac{50}{5}-\frac{3}{5}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Convert 10 to fraction \frac{50}{5}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(\frac{50-3}{5}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Since \frac{50}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\left(\frac{47}{5}+\frac{3}{5}\right)\times \frac{1}{4}}\times 3}
Subtract 3 from 50 to get 47.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\frac{47+3}{5}\times \frac{1}{4}}\times 3}
Since \frac{47}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\frac{50}{5}\times \frac{1}{4}}\times 3}
Add 47 and 3 to get 50.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+10\times \frac{1}{4}}\times 3}
Divide 50 by 5 to get 10.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\frac{10}{4}}\times 3}
Multiply 10 and \frac{1}{4} to get \frac{10}{4}.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\frac{5}{2}}\times 3}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41}{28}+\frac{70}{28}}\times 3}
Least common multiple of 28 and 2 is 28. Convert \frac{41}{28} and \frac{5}{2} to fractions with denominator 28.
2+\sqrt{\frac{\frac{4}{5}}{\frac{41+70}{28}}\times 3}
Since \frac{41}{28} and \frac{70}{28} have the same denominator, add them by adding their numerators.
2+\sqrt{\frac{\frac{4}{5}}{\frac{111}{28}}\times 3}
Add 41 and 70 to get 111.
2+\sqrt{\frac{4}{5}\times \frac{28}{111}\times 3}
Divide \frac{4}{5} by \frac{111}{28} by multiplying \frac{4}{5} by the reciprocal of \frac{111}{28}.
2+\sqrt{\frac{4\times 28}{5\times 111}\times 3}
Multiply \frac{4}{5} times \frac{28}{111} by multiplying numerator times numerator and denominator times denominator.
2+\sqrt{\frac{112}{555}\times 3}
Do the multiplications in the fraction \frac{4\times 28}{5\times 111}.
2+\sqrt{\frac{112\times 3}{555}}
Express \frac{112}{555}\times 3 as a single fraction.
2+\sqrt{\frac{336}{555}}
Multiply 112 and 3 to get 336.
2+\sqrt{\frac{112}{185}}
Reduce the fraction \frac{336}{555} to lowest terms by extracting and canceling out 3.
2+\frac{\sqrt{112}}{\sqrt{185}}
Rewrite the square root of the division \sqrt{\frac{112}{185}} as the division of square roots \frac{\sqrt{112}}{\sqrt{185}}.
2+\frac{4\sqrt{7}}{\sqrt{185}}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
2+\frac{4\sqrt{7}\sqrt{185}}{\left(\sqrt{185}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{7}}{\sqrt{185}} by multiplying numerator and denominator by \sqrt{185}.
2+\frac{4\sqrt{7}\sqrt{185}}{185}
The square of \sqrt{185} is 185.
2+\frac{4\sqrt{1295}}{185}
To multiply \sqrt{7} and \sqrt{185}, multiply the numbers under the square root.
\frac{2\times 185}{185}+\frac{4\sqrt{1295}}{185}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{185}{185}.
\frac{2\times 185+4\sqrt{1295}}{185}
Since \frac{2\times 185}{185} and \frac{4\sqrt{1295}}{185} have the same denominator, add them by adding their numerators.
\frac{370+4\sqrt{1295}}{185}
Do the multiplications in 2\times 185+4\sqrt{1295}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}