Solve for y
y = \frac{143}{36} = 3\frac{35}{36} \approx 3.972222222
Graph
Share
Copied to clipboard
40+4\left(y+17\right)-5\left(8y-7\right)=0
Multiply both sides of the equation by 20, the least common multiple of 5,4.
40+4y+68-5\left(8y-7\right)=0
Use the distributive property to multiply 4 by y+17.
108+4y-5\left(8y-7\right)=0
Add 40 and 68 to get 108.
108+4y-40y+35=0
Use the distributive property to multiply -5 by 8y-7.
108-36y+35=0
Combine 4y and -40y to get -36y.
143-36y=0
Add 108 and 35 to get 143.
-36y=-143
Subtract 143 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-143}{-36}
Divide both sides by -36.
y=\frac{143}{36}
Fraction \frac{-143}{-36} can be simplified to \frac{143}{36} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}