2 + \frac { x } { x } d x + ( \frac { x } { y } + 2 ) d y = 0
Solve for d
d=-\frac{1}{x+y}
x\neq -y\text{ and }x\neq 0\text{ and }y\neq 0
Solve for x
x=-y-\frac{1}{d}
d\neq -\frac{1}{y}\text{ and }d\neq 0\text{ and }y\neq 0
Graph
Quiz
Linear Equation
5 problems similar to:
2 + \frac { x } { x } d x + ( \frac { x } { y } + 2 ) d y = 0
Share
Copied to clipboard
xy\times 2+yxdx+\left(\frac{x}{y}+2\right)dyxy=0
Multiply both sides of the equation by xy, the least common multiple of x,y.
xy\times 2+yx^{2}d+\left(\frac{x}{y}+2\right)dyxy=0
Multiply x and x to get x^{2}.
xy\times 2+yx^{2}d+\left(\frac{x}{y}+2\right)dy^{2}x=0
Multiply y and y to get y^{2}.
xy\times 2+yx^{2}d+\left(\frac{x}{y}+\frac{2y}{y}\right)dy^{2}x=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{y}{y}.
xy\times 2+yx^{2}d+\frac{x+2y}{y}dy^{2}x=0
Since \frac{x}{y} and \frac{2y}{y} have the same denominator, add them by adding their numerators.
xy\times 2+yx^{2}d+\frac{\left(x+2y\right)d}{y}y^{2}x=0
Express \frac{x+2y}{y}d as a single fraction.
xy\times 2+yx^{2}d+\frac{\left(x+2y\right)dy^{2}}{y}x=0
Express \frac{\left(x+2y\right)d}{y}y^{2} as a single fraction.
xy\times 2+yx^{2}d+dy\left(x+2y\right)x=0
Cancel out y in both numerator and denominator.
xy\times 2+yx^{2}d+\left(dyx+2dy^{2}\right)x=0
Use the distributive property to multiply dy by x+2y.
xy\times 2+yx^{2}d+dyx^{2}+2dy^{2}x=0
Use the distributive property to multiply dyx+2dy^{2} by x.
xy\times 2+2yx^{2}d+2dy^{2}x=0
Combine yx^{2}d and dyx^{2} to get 2yx^{2}d.
2yx^{2}d+2dy^{2}x=-xy\times 2
Subtract xy\times 2 from both sides. Anything subtracted from zero gives its negation.
2yx^{2}d+2dy^{2}x=-2xy
Multiply -1 and 2 to get -2.
\left(2yx^{2}+2y^{2}x\right)d=-2xy
Combine all terms containing d.
\left(2xy^{2}+2yx^{2}\right)d=-2xy
The equation is in standard form.
\frac{\left(2xy^{2}+2yx^{2}\right)d}{2xy^{2}+2yx^{2}}=-\frac{2xy}{2xy^{2}+2yx^{2}}
Divide both sides by 2yx^{2}+2y^{2}x.
d=-\frac{2xy}{2xy^{2}+2yx^{2}}
Dividing by 2yx^{2}+2y^{2}x undoes the multiplication by 2yx^{2}+2y^{2}x.
d=-\frac{1}{x+y}
Divide -2xy by 2yx^{2}+2y^{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}