Evaluate
t
Differentiate w.r.t. t
1
Quiz
Polynomial
5 problems similar to:
2 + \frac { t ^ { 2 } } { t + 1 } - ( 1 + \frac { 1 } { t + 1 } )
Share
Copied to clipboard
\frac{2\left(t+1\right)}{t+1}+\frac{t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{t+1}{t+1}.
\frac{2\left(t+1\right)+t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right)
Since \frac{2\left(t+1\right)}{t+1} and \frac{t^{2}}{t+1} have the same denominator, add them by adding their numerators.
\frac{2t+2+t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right)
Do the multiplications in 2\left(t+1\right)+t^{2}.
\frac{2t+2+t^{2}}{t+1}-\left(\frac{t+1}{t+1}+\frac{1}{t+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{t+1}{t+1}.
\frac{2t+2+t^{2}}{t+1}-\frac{t+1+1}{t+1}
Since \frac{t+1}{t+1} and \frac{1}{t+1} have the same denominator, add them by adding their numerators.
\frac{2t+2+t^{2}}{t+1}-\frac{t+2}{t+1}
Combine like terms in t+1+1.
\frac{2t+2+t^{2}-\left(t+2\right)}{t+1}
Since \frac{2t+2+t^{2}}{t+1} and \frac{t+2}{t+1} have the same denominator, subtract them by subtracting their numerators.
\frac{2t+2+t^{2}-t-2}{t+1}
Do the multiplications in 2t+2+t^{2}-\left(t+2\right).
\frac{t+t^{2}}{t+1}
Combine like terms in 2t+2+t^{2}-t-2.
\frac{t\left(t+1\right)}{t+1}
Factor the expressions that are not already factored in \frac{t+t^{2}}{t+1}.
t
Cancel out t+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2\left(t+1\right)}{t+1}+\frac{t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right))
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{t+1}{t+1}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2\left(t+1\right)+t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right))
Since \frac{2\left(t+1\right)}{t+1} and \frac{t^{2}}{t+1} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}}{t+1}-\left(1+\frac{1}{t+1}\right))
Do the multiplications in 2\left(t+1\right)+t^{2}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}}{t+1}-\left(\frac{t+1}{t+1}+\frac{1}{t+1}\right))
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{t+1}{t+1}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}}{t+1}-\frac{t+1+1}{t+1})
Since \frac{t+1}{t+1} and \frac{1}{t+1} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}}{t+1}-\frac{t+2}{t+1})
Combine like terms in t+1+1.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}-\left(t+2\right)}{t+1})
Since \frac{2t+2+t^{2}}{t+1} and \frac{t+2}{t+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t+2+t^{2}-t-2}{t+1})
Do the multiplications in 2t+2+t^{2}-\left(t+2\right).
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{t+t^{2}}{t+1})
Combine like terms in 2t+2+t^{2}-t-2.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{t\left(t+1\right)}{t+1})
Factor the expressions that are not already factored in \frac{t+t^{2}}{t+1}.
\frac{\mathrm{d}}{\mathrm{d}t}(t)
Cancel out t+1 in both numerator and denominator.
t^{1-1}
The derivative of ax^{n} is nax^{n-1}.
t^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}