Evaluate
\frac{457}{126}\approx 3.626984127
Factor
\frac{457}{2 \cdot 3 ^ {2} \cdot 7} = 3\frac{79}{126} = 3.626984126984127
Share
Copied to clipboard
2+\frac{1}{14}+\frac{2}{\frac{24}{18}}+\frac{\frac{2}{43}}{\frac{72}{86}}
Reduce the fraction \frac{3}{42} to lowest terms by extracting and canceling out 3.
\frac{28}{14}+\frac{1}{14}+\frac{2}{\frac{24}{18}}+\frac{\frac{2}{43}}{\frac{72}{86}}
Convert 2 to fraction \frac{28}{14}.
\frac{28+1}{14}+\frac{2}{\frac{24}{18}}+\frac{\frac{2}{43}}{\frac{72}{86}}
Since \frac{28}{14} and \frac{1}{14} have the same denominator, add them by adding their numerators.
\frac{29}{14}+\frac{2}{\frac{24}{18}}+\frac{\frac{2}{43}}{\frac{72}{86}}
Add 28 and 1 to get 29.
\frac{29}{14}+\frac{2\times 18}{24}+\frac{\frac{2}{43}}{\frac{72}{86}}
Divide 2 by \frac{24}{18} by multiplying 2 by the reciprocal of \frac{24}{18}.
\frac{29}{14}+\frac{36}{24}+\frac{\frac{2}{43}}{\frac{72}{86}}
Multiply 2 and 18 to get 36.
\frac{29}{14}+\frac{3}{2}+\frac{\frac{2}{43}}{\frac{72}{86}}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
\frac{29}{14}+\frac{21}{14}+\frac{\frac{2}{43}}{\frac{72}{86}}
Least common multiple of 14 and 2 is 14. Convert \frac{29}{14} and \frac{3}{2} to fractions with denominator 14.
\frac{29+21}{14}+\frac{\frac{2}{43}}{\frac{72}{86}}
Since \frac{29}{14} and \frac{21}{14} have the same denominator, add them by adding their numerators.
\frac{50}{14}+\frac{\frac{2}{43}}{\frac{72}{86}}
Add 29 and 21 to get 50.
\frac{25}{7}+\frac{\frac{2}{43}}{\frac{72}{86}}
Reduce the fraction \frac{50}{14} to lowest terms by extracting and canceling out 2.
\frac{25}{7}+\frac{2\times 86}{43\times 72}
Divide \frac{2}{43} by \frac{72}{86} by multiplying \frac{2}{43} by the reciprocal of \frac{72}{86}.
\frac{25}{7}+\frac{1}{18}
Cancel out 2\times 2\times 43 in both numerator and denominator.
\frac{450}{126}+\frac{7}{126}
Least common multiple of 7 and 18 is 126. Convert \frac{25}{7} and \frac{1}{18} to fractions with denominator 126.
\frac{450+7}{126}
Since \frac{450}{126} and \frac{7}{126} have the same denominator, add them by adding their numerators.
\frac{457}{126}
Add 450 and 7 to get 457.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}