Verify
false
Share
Copied to clipboard
2+\frac{1}{2+\frac{1}{1+1}}=\frac{61}{24}
Divide 1 by 1 to get 1.
2+\frac{1}{2+\frac{1}{2}}=\frac{61}{24}
Add 1 and 1 to get 2.
2+\frac{1}{\frac{4}{2}+\frac{1}{2}}=\frac{61}{24}
Convert 2 to fraction \frac{4}{2}.
2+\frac{1}{\frac{4+1}{2}}=\frac{61}{24}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
2+\frac{1}{\frac{5}{2}}=\frac{61}{24}
Add 4 and 1 to get 5.
2+1\times \frac{2}{5}=\frac{61}{24}
Divide 1 by \frac{5}{2} by multiplying 1 by the reciprocal of \frac{5}{2}.
2+\frac{2}{5}=\frac{61}{24}
Multiply 1 and \frac{2}{5} to get \frac{2}{5}.
\frac{10}{5}+\frac{2}{5}=\frac{61}{24}
Convert 2 to fraction \frac{10}{5}.
\frac{10+2}{5}=\frac{61}{24}
Since \frac{10}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{12}{5}=\frac{61}{24}
Add 10 and 2 to get 12.
\frac{288}{120}=\frac{305}{120}
Least common multiple of 5 and 24 is 120. Convert \frac{12}{5} and \frac{61}{24} to fractions with denominator 120.
\text{false}
Compare \frac{288}{120} and \frac{305}{120}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}