Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2+\frac{4\left(\sqrt{3}\right)^{2}-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-3\sqrt{2}\right)^{2}.
2+\frac{4\times 3-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
The square of \sqrt{3} is 3.
2+\frac{12-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Multiply 4 and 3 to get 12.
2+\frac{12-12\sqrt{6}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2+\frac{12-12\sqrt{6}+9\times 2}{6}\left(5+2\sqrt{6}\right)
The square of \sqrt{2} is 2.
2+\frac{12-12\sqrt{6}+18}{6}\left(5+2\sqrt{6}\right)
Multiply 9 and 2 to get 18.
2+\frac{30-12\sqrt{6}}{6}\left(5+2\sqrt{6}\right)
Add 12 and 18 to get 30.
2+\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)
Divide each term of 30-12\sqrt{6} by 6 to get 5-2\sqrt{6}.
2+25-\left(2\sqrt{6}\right)^{2}
Consider \left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
2+25-2^{2}\left(\sqrt{6}\right)^{2}
Expand \left(2\sqrt{6}\right)^{2}.
2+25-4\left(\sqrt{6}\right)^{2}
Calculate 2 to the power of 2 and get 4.
2+25-4\times 6
The square of \sqrt{6} is 6.
2+25-24
Multiply 4 and 6 to get 24.
2+1
Subtract 24 from 25 to get 1.
3
Add 2 and 1 to get 3.