Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{10+3}{5}-\frac{5\times 8+7}{8}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Multiply 2 and 5 to get 10.
\frac{13}{5}-\frac{5\times 8+7}{8}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Add 10 and 3 to get 13.
\frac{13}{5}-\frac{40+7}{8}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Multiply 5 and 8 to get 40.
\frac{13}{5}-\frac{47}{8}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Add 40 and 7 to get 47.
\frac{104}{40}-\frac{235}{40}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Least common multiple of 5 and 8 is 40. Convert \frac{13}{5} and \frac{47}{8} to fractions with denominator 40.
\frac{104-235}{40}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Since \frac{104}{40} and \frac{235}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{131}{40}+\frac{1\times 4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Subtract 235 from 104 to get -131.
-\frac{131}{40}+\frac{4+3}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Multiply 1 and 4 to get 4.
-\frac{131}{40}+\frac{7}{4}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Add 4 and 3 to get 7.
-\frac{131}{40}+\frac{70}{40}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Least common multiple of 40 and 4 is 40. Convert -\frac{131}{40} and \frac{7}{4} to fractions with denominator 40.
\frac{-131+70}{40}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Since -\frac{131}{40} and \frac{70}{40} have the same denominator, add them by adding their numerators.
-\frac{61}{40}-\frac{3\times 8+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Add -131 and 70 to get -61.
-\frac{61}{40}-\frac{24+1}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Multiply 3 and 8 to get 24.
-\frac{61}{40}-\frac{25}{8}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Add 24 and 1 to get 25.
-\frac{61}{40}-\frac{125}{40}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Least common multiple of 40 and 8 is 40. Convert -\frac{61}{40} and \frac{25}{8} to fractions with denominator 40.
\frac{-61-125}{40}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Since -\frac{61}{40} and \frac{125}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{-186}{40}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Subtract 125 from -61 to get -186.
-\frac{93}{20}-\frac{4\times 4+3}{4}-\frac{1\times 5+1}{5}
Reduce the fraction \frac{-186}{40} to lowest terms by extracting and canceling out 2.
-\frac{93}{20}-\frac{16+3}{4}-\frac{1\times 5+1}{5}
Multiply 4 and 4 to get 16.
-\frac{93}{20}-\frac{19}{4}-\frac{1\times 5+1}{5}
Add 16 and 3 to get 19.
-\frac{93}{20}-\frac{95}{20}-\frac{1\times 5+1}{5}
Least common multiple of 20 and 4 is 20. Convert -\frac{93}{20} and \frac{19}{4} to fractions with denominator 20.
\frac{-93-95}{20}-\frac{1\times 5+1}{5}
Since -\frac{93}{20} and \frac{95}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-188}{20}-\frac{1\times 5+1}{5}
Subtract 95 from -93 to get -188.
-\frac{47}{5}-\frac{1\times 5+1}{5}
Reduce the fraction \frac{-188}{20} to lowest terms by extracting and canceling out 4.
-\frac{47}{5}-\frac{5+1}{5}
Multiply 1 and 5 to get 5.
-\frac{47}{5}-\frac{6}{5}
Add 5 and 1 to get 6.
\frac{-47-6}{5}
Since -\frac{47}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{53}{5}
Subtract 6 from -47 to get -53.