Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\frac{\left(2\times 25+22\right)\times 35}{25\left(1\times 35+13\right)}
Divide \frac{2\times 25+22}{25} by \frac{1\times 35+13}{35} by multiplying \frac{2\times 25+22}{25} by the reciprocal of \frac{1\times 35+13}{35}.
\frac{7\left(22+2\times 25\right)}{5\left(13+35\right)}
Cancel out 5 in both numerator and denominator.
\frac{7\left(22+50\right)}{5\left(13+35\right)}
Multiply 2 and 25 to get 50.
\frac{7\times 72}{5\left(13+35\right)}
Add 22 and 50 to get 72.
\frac{504}{5\left(13+35\right)}
Multiply 7 and 72 to get 504.
\frac{504}{5\times 48}
Add 13 and 35 to get 48.
\frac{504}{240}
Multiply 5 and 48 to get 240.
\frac{21}{10}
Reduce the fraction \frac{504}{240} to lowest terms by extracting and canceling out 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}