Evaluate
\frac{133}{40}=3.325
Factor
\frac{7 \cdot 19}{2 ^ {3} \cdot 5} = 3\frac{13}{40} = 3.325
Share
Copied to clipboard
\frac{16+1}{8}+\frac{1\times 10+2}{10}
Multiply 2 and 8 to get 16.
\frac{17}{8}+\frac{1\times 10+2}{10}
Add 16 and 1 to get 17.
\frac{17}{8}+\frac{10+2}{10}
Multiply 1 and 10 to get 10.
\frac{17}{8}+\frac{12}{10}
Add 10 and 2 to get 12.
\frac{17}{8}+\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{85}{40}+\frac{48}{40}
Least common multiple of 8 and 5 is 40. Convert \frac{17}{8} and \frac{6}{5} to fractions with denominator 40.
\frac{85+48}{40}
Since \frac{85}{40} and \frac{48}{40} have the same denominator, add them by adding their numerators.
\frac{133}{40}
Add 85 and 48 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}