Solve for x
x=\frac{\sqrt{233}}{70}-\frac{1}{7}\approx 0.075204822
x=-\frac{\sqrt{233}}{70}-\frac{1}{7}\approx -0.360919107
Graph
Share
Copied to clipboard
56x^{2}+16x=1.52
Use the distributive property to multiply 1x by 56x+16.
56x^{2}+16x-1.52=0
Subtract 1.52 from both sides.
x=\frac{-16±\sqrt{16^{2}-4\times 56\left(-1.52\right)}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, 16 for b, and -1.52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 56\left(-1.52\right)}}{2\times 56}
Square 16.
x=\frac{-16±\sqrt{256-224\left(-1.52\right)}}{2\times 56}
Multiply -4 times 56.
x=\frac{-16±\sqrt{256+340.48}}{2\times 56}
Multiply -224 times -1.52.
x=\frac{-16±\sqrt{596.48}}{2\times 56}
Add 256 to 340.48.
x=\frac{-16±\frac{8\sqrt{233}}{5}}{2\times 56}
Take the square root of 596.48.
x=\frac{-16±\frac{8\sqrt{233}}{5}}{112}
Multiply 2 times 56.
x=\frac{\frac{8\sqrt{233}}{5}-16}{112}
Now solve the equation x=\frac{-16±\frac{8\sqrt{233}}{5}}{112} when ± is plus. Add -16 to \frac{8\sqrt{233}}{5}.
x=\frac{\sqrt{233}}{70}-\frac{1}{7}
Divide -16+\frac{8\sqrt{233}}{5} by 112.
x=\frac{-\frac{8\sqrt{233}}{5}-16}{112}
Now solve the equation x=\frac{-16±\frac{8\sqrt{233}}{5}}{112} when ± is minus. Subtract \frac{8\sqrt{233}}{5} from -16.
x=-\frac{\sqrt{233}}{70}-\frac{1}{7}
Divide -16-\frac{8\sqrt{233}}{5} by 112.
x=\frac{\sqrt{233}}{70}-\frac{1}{7} x=-\frac{\sqrt{233}}{70}-\frac{1}{7}
The equation is now solved.
56x^{2}+16x=1.52
Use the distributive property to multiply 1x by 56x+16.
\frac{56x^{2}+16x}{56}=\frac{1.52}{56}
Divide both sides by 56.
x^{2}+\frac{16}{56}x=\frac{1.52}{56}
Dividing by 56 undoes the multiplication by 56.
x^{2}+\frac{2}{7}x=\frac{1.52}{56}
Reduce the fraction \frac{16}{56} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{2}{7}x=\frac{19}{700}
Divide 1.52 by 56.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=\frac{19}{700}+\left(\frac{1}{7}\right)^{2}
Divide \frac{2}{7}, the coefficient of the x term, by 2 to get \frac{1}{7}. Then add the square of \frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{19}{700}+\frac{1}{49}
Square \frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{233}{4900}
Add \frac{19}{700} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{7}\right)^{2}=\frac{233}{4900}
Factor x^{2}+\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{\frac{233}{4900}}
Take the square root of both sides of the equation.
x+\frac{1}{7}=\frac{\sqrt{233}}{70} x+\frac{1}{7}=-\frac{\sqrt{233}}{70}
Simplify.
x=\frac{\sqrt{233}}{70}-\frac{1}{7} x=-\frac{\sqrt{233}}{70}-\frac{1}{7}
Subtract \frac{1}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}