Evaluate
\frac{111}{55}\approx 2.018181818
Factor
\frac{3 \cdot 37}{5 \cdot 11} = 2\frac{1}{55} = 2.018181818181818
Share
Copied to clipboard
\begin{array}{l}\phantom{990)}\phantom{1}\\990\overline{)1998}\\\end{array}
Use the 1^{st} digit 1 from dividend 1998
\begin{array}{l}\phantom{990)}0\phantom{2}\\990\overline{)1998}\\\end{array}
Since 1 is less than 990, use the next digit 9 from dividend 1998 and add 0 to the quotient
\begin{array}{l}\phantom{990)}0\phantom{3}\\990\overline{)1998}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1998
\begin{array}{l}\phantom{990)}00\phantom{4}\\990\overline{)1998}\\\end{array}
Since 19 is less than 990, use the next digit 9 from dividend 1998 and add 0 to the quotient
\begin{array}{l}\phantom{990)}00\phantom{5}\\990\overline{)1998}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1998
\begin{array}{l}\phantom{990)}000\phantom{6}\\990\overline{)1998}\\\end{array}
Since 199 is less than 990, use the next digit 8 from dividend 1998 and add 0 to the quotient
\begin{array}{l}\phantom{990)}000\phantom{7}\\990\overline{)1998}\\\end{array}
Use the 4^{th} digit 8 from dividend 1998
\begin{array}{l}\phantom{990)}0002\phantom{8}\\990\overline{)1998}\\\phantom{990)}\underline{\phantom{}1980\phantom{}}\\\phantom{990)99}18\\\end{array}
Find closest multiple of 990 to 1998. We see that 2 \times 990 = 1980 is the nearest. Now subtract 1980 from 1998 to get reminder 18. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }18
Since 18 is less than 990, stop the division. The reminder is 18. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}