Evaluate
\frac{2660004647}{2659967351}\approx 1.000014021
Factor
\frac{2660004647}{1999 \cdot 1330649} = 1\frac{37296}{2659967351} = 1.000014021224729
Share
Copied to clipboard
\frac{1997\times 1998}{1997\times 1998+1941}+\frac{1}{1999}
Divide 1997 by \frac{1997\times 1998+1941}{1998} by multiplying 1997 by the reciprocal of \frac{1997\times 1998+1941}{1998}.
\frac{3990006}{1997\times 1998+1941}+\frac{1}{1999}
Multiply 1997 and 1998 to get 3990006.
\frac{3990006}{3990006+1941}+\frac{1}{1999}
Multiply 1997 and 1998 to get 3990006.
\frac{3990006}{3991947}+\frac{1}{1999}
Add 3990006 and 1941 to get 3991947.
\frac{1330002}{1330649}+\frac{1}{1999}
Reduce the fraction \frac{3990006}{3991947} to lowest terms by extracting and canceling out 3.
\frac{2658673998}{2659967351}+\frac{1330649}{2659967351}
Least common multiple of 1330649 and 1999 is 2659967351. Convert \frac{1330002}{1330649} and \frac{1}{1999} to fractions with denominator 2659967351.
\frac{2658673998+1330649}{2659967351}
Since \frac{2658673998}{2659967351} and \frac{1330649}{2659967351} have the same denominator, add them by adding their numerators.
\frac{2660004647}{2659967351}
Add 2658673998 and 1330649 to get 2660004647.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}