Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{3991680)}\phantom{1}\\3991680\overline{)19958400}\\\end{array}
Use the 1^{st} digit 1 from dividend 19958400
\begin{array}{l}\phantom{3991680)}0\phantom{2}\\3991680\overline{)19958400}\\\end{array}
Since 1 is less than 3991680, use the next digit 9 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}0\phantom{3}\\3991680\overline{)19958400}\\\end{array}
Use the 2^{nd} digit 9 from dividend 19958400
\begin{array}{l}\phantom{3991680)}00\phantom{4}\\3991680\overline{)19958400}\\\end{array}
Since 19 is less than 3991680, use the next digit 9 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}00\phantom{5}\\3991680\overline{)19958400}\\\end{array}
Use the 3^{rd} digit 9 from dividend 19958400
\begin{array}{l}\phantom{3991680)}000\phantom{6}\\3991680\overline{)19958400}\\\end{array}
Since 199 is less than 3991680, use the next digit 5 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}000\phantom{7}\\3991680\overline{)19958400}\\\end{array}
Use the 4^{th} digit 5 from dividend 19958400
\begin{array}{l}\phantom{3991680)}0000\phantom{8}\\3991680\overline{)19958400}\\\end{array}
Since 1995 is less than 3991680, use the next digit 8 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}0000\phantom{9}\\3991680\overline{)19958400}\\\end{array}
Use the 5^{th} digit 8 from dividend 19958400
\begin{array}{l}\phantom{3991680)}00000\phantom{10}\\3991680\overline{)19958400}\\\end{array}
Since 19958 is less than 3991680, use the next digit 4 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}00000\phantom{11}\\3991680\overline{)19958400}\\\end{array}
Use the 6^{th} digit 4 from dividend 19958400
\begin{array}{l}\phantom{3991680)}000000\phantom{12}\\3991680\overline{)19958400}\\\end{array}
Since 199584 is less than 3991680, use the next digit 0 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}000000\phantom{13}\\3991680\overline{)19958400}\\\end{array}
Use the 7^{th} digit 0 from dividend 19958400
\begin{array}{l}\phantom{3991680)}0000000\phantom{14}\\3991680\overline{)19958400}\\\end{array}
Since 1995840 is less than 3991680, use the next digit 0 from dividend 19958400 and add 0 to the quotient
\begin{array}{l}\phantom{3991680)}0000000\phantom{15}\\3991680\overline{)19958400}\\\end{array}
Use the 8^{th} digit 0 from dividend 19958400
\begin{array}{l}\phantom{3991680)}00000005\phantom{16}\\3991680\overline{)19958400}\\\phantom{3991680)}\underline{\phantom{}19958400\phantom{}}\\\phantom{3991680)99999999}0\\\end{array}
Find closest multiple of 3991680 to 19958400. We see that 5 \times 3991680 = 19958400 is the nearest. Now subtract 19958400 from 19958400 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 3991680, stop the division. The reminder is 0. The topmost line 00000005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}