Evaluate
\frac{199}{24}\approx 8.291666667
Factor
\frac{199}{2 ^ {3} \cdot 3} = 8\frac{7}{24} = 8.291666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)199}\\\end{array}
Use the 1^{st} digit 1 from dividend 199
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)199}\\\end{array}
Since 1 is less than 24, use the next digit 9 from dividend 199 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)199}\\\end{array}
Use the 2^{nd} digit 9 from dividend 199
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)199}\\\end{array}
Since 19 is less than 24, use the next digit 9 from dividend 199 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)199}\\\end{array}
Use the 3^{rd} digit 9 from dividend 199
\begin{array}{l}\phantom{24)}008\phantom{6}\\24\overline{)199}\\\phantom{24)}\underline{\phantom{}192\phantom{}}\\\phantom{24)99}7\\\end{array}
Find closest multiple of 24 to 199. We see that 8 \times 24 = 192 is the nearest. Now subtract 192 from 199 to get reminder 7. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }7
Since 7 is less than 24, stop the division. The reminder is 7. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}