Evaluate
\frac{197}{60}\approx 3.283333333
Factor
\frac{197}{2 ^ {2} \cdot 3 \cdot 5} = 3\frac{17}{60} = 3.283333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)197}\\\end{array}
Use the 1^{st} digit 1 from dividend 197
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)197}\\\end{array}
Since 1 is less than 60, use the next digit 9 from dividend 197 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)197}\\\end{array}
Use the 2^{nd} digit 9 from dividend 197
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)197}\\\end{array}
Since 19 is less than 60, use the next digit 7 from dividend 197 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)197}\\\end{array}
Use the 3^{rd} digit 7 from dividend 197
\begin{array}{l}\phantom{60)}003\phantom{6}\\60\overline{)197}\\\phantom{60)}\underline{\phantom{}180\phantom{}}\\\phantom{60)9}17\\\end{array}
Find closest multiple of 60 to 197. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 197 to get reminder 17. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }17
Since 17 is less than 60, stop the division. The reminder is 17. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}