Evaluate
\frac{196769}{37}\approx 5318.081081081
Factor
\frac{196769}{37} = 5318\frac{3}{37} = 5318.081081081081
Share
Copied to clipboard
\begin{array}{l}\phantom{37)}\phantom{1}\\37\overline{)196769}\\\end{array}
Use the 1^{st} digit 1 from dividend 196769
\begin{array}{l}\phantom{37)}0\phantom{2}\\37\overline{)196769}\\\end{array}
Since 1 is less than 37, use the next digit 9 from dividend 196769 and add 0 to the quotient
\begin{array}{l}\phantom{37)}0\phantom{3}\\37\overline{)196769}\\\end{array}
Use the 2^{nd} digit 9 from dividend 196769
\begin{array}{l}\phantom{37)}00\phantom{4}\\37\overline{)196769}\\\end{array}
Since 19 is less than 37, use the next digit 6 from dividend 196769 and add 0 to the quotient
\begin{array}{l}\phantom{37)}00\phantom{5}\\37\overline{)196769}\\\end{array}
Use the 3^{rd} digit 6 from dividend 196769
\begin{array}{l}\phantom{37)}005\phantom{6}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}11\\\end{array}
Find closest multiple of 37 to 196. We see that 5 \times 37 = 185 is the nearest. Now subtract 185 from 196 to get reminder 11. Add 5 to quotient.
\begin{array}{l}\phantom{37)}005\phantom{7}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\end{array}
Use the 4^{th} digit 7 from dividend 196769
\begin{array}{l}\phantom{37)}0053\phantom{8}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\phantom{37)}\underline{\phantom{9}111\phantom{99}}\\\phantom{37)999}6\\\end{array}
Find closest multiple of 37 to 117. We see that 3 \times 37 = 111 is the nearest. Now subtract 111 from 117 to get reminder 6. Add 3 to quotient.
\begin{array}{l}\phantom{37)}0053\phantom{9}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\phantom{37)}\underline{\phantom{9}111\phantom{99}}\\\phantom{37)999}66\\\end{array}
Use the 5^{th} digit 6 from dividend 196769
\begin{array}{l}\phantom{37)}00531\phantom{10}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\phantom{37)}\underline{\phantom{9}111\phantom{99}}\\\phantom{37)999}66\\\phantom{37)}\underline{\phantom{999}37\phantom{9}}\\\phantom{37)999}29\\\end{array}
Find closest multiple of 37 to 66. We see that 1 \times 37 = 37 is the nearest. Now subtract 37 from 66 to get reminder 29. Add 1 to quotient.
\begin{array}{l}\phantom{37)}00531\phantom{11}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\phantom{37)}\underline{\phantom{9}111\phantom{99}}\\\phantom{37)999}66\\\phantom{37)}\underline{\phantom{999}37\phantom{9}}\\\phantom{37)999}299\\\end{array}
Use the 6^{th} digit 9 from dividend 196769
\begin{array}{l}\phantom{37)}005318\phantom{12}\\37\overline{)196769}\\\phantom{37)}\underline{\phantom{}185\phantom{999}}\\\phantom{37)9}117\\\phantom{37)}\underline{\phantom{9}111\phantom{99}}\\\phantom{37)999}66\\\phantom{37)}\underline{\phantom{999}37\phantom{9}}\\\phantom{37)999}299\\\phantom{37)}\underline{\phantom{999}296\phantom{}}\\\phantom{37)99999}3\\\end{array}
Find closest multiple of 37 to 299. We see that 8 \times 37 = 296 is the nearest. Now subtract 296 from 299 to get reminder 3. Add 8 to quotient.
\text{Quotient: }5318 \text{Reminder: }3
Since 3 is less than 37, stop the division. The reminder is 3. The topmost line 005318 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5318.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}