Solve for x
x=\frac{\sqrt{2426}+5}{98}\approx 0.553616749
x=\frac{5-\sqrt{2426}}{98}\approx -0.451575933
Graph
Share
Copied to clipboard
196x^{2}-20x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 196\left(-49\right)}}{2\times 196}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 196 for a, -20 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 196\left(-49\right)}}{2\times 196}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-784\left(-49\right)}}{2\times 196}
Multiply -4 times 196.
x=\frac{-\left(-20\right)±\sqrt{400+38416}}{2\times 196}
Multiply -784 times -49.
x=\frac{-\left(-20\right)±\sqrt{38816}}{2\times 196}
Add 400 to 38416.
x=\frac{-\left(-20\right)±4\sqrt{2426}}{2\times 196}
Take the square root of 38816.
x=\frac{20±4\sqrt{2426}}{2\times 196}
The opposite of -20 is 20.
x=\frac{20±4\sqrt{2426}}{392}
Multiply 2 times 196.
x=\frac{4\sqrt{2426}+20}{392}
Now solve the equation x=\frac{20±4\sqrt{2426}}{392} when ± is plus. Add 20 to 4\sqrt{2426}.
x=\frac{\sqrt{2426}+5}{98}
Divide 20+4\sqrt{2426} by 392.
x=\frac{20-4\sqrt{2426}}{392}
Now solve the equation x=\frac{20±4\sqrt{2426}}{392} when ± is minus. Subtract 4\sqrt{2426} from 20.
x=\frac{5-\sqrt{2426}}{98}
Divide 20-4\sqrt{2426} by 392.
x=\frac{\sqrt{2426}+5}{98} x=\frac{5-\sqrt{2426}}{98}
The equation is now solved.
196x^{2}-20x-49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
196x^{2}-20x-49-\left(-49\right)=-\left(-49\right)
Add 49 to both sides of the equation.
196x^{2}-20x=-\left(-49\right)
Subtracting -49 from itself leaves 0.
196x^{2}-20x=49
Subtract -49 from 0.
\frac{196x^{2}-20x}{196}=\frac{49}{196}
Divide both sides by 196.
x^{2}+\left(-\frac{20}{196}\right)x=\frac{49}{196}
Dividing by 196 undoes the multiplication by 196.
x^{2}-\frac{5}{49}x=\frac{49}{196}
Reduce the fraction \frac{-20}{196} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{5}{49}x=\frac{1}{4}
Reduce the fraction \frac{49}{196} to lowest terms by extracting and canceling out 49.
x^{2}-\frac{5}{49}x+\left(-\frac{5}{98}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{98}\right)^{2}
Divide -\frac{5}{49}, the coefficient of the x term, by 2 to get -\frac{5}{98}. Then add the square of -\frac{5}{98} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{49}x+\frac{25}{9604}=\frac{1}{4}+\frac{25}{9604}
Square -\frac{5}{98} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{49}x+\frac{25}{9604}=\frac{1213}{4802}
Add \frac{1}{4} to \frac{25}{9604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{98}\right)^{2}=\frac{1213}{4802}
Factor x^{2}-\frac{5}{49}x+\frac{25}{9604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{98}\right)^{2}}=\sqrt{\frac{1213}{4802}}
Take the square root of both sides of the equation.
x-\frac{5}{98}=\frac{\sqrt{2426}}{98} x-\frac{5}{98}=-\frac{\sqrt{2426}}{98}
Simplify.
x=\frac{\sqrt{2426}+5}{98} x=\frac{5-\sqrt{2426}}{98}
Add \frac{5}{98} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}