Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)196}\\\end{array}
Use the 1^{st} digit 1 from dividend 196
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)196}\\\end{array}
Since 1 is less than 14, use the next digit 9 from dividend 196 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)196}\\\end{array}
Use the 2^{nd} digit 9 from dividend 196
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)196}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}5\\\end{array}
Find closest multiple of 14 to 19. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 19 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{14)}01\phantom{5}\\14\overline{)196}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}56\\\end{array}
Use the 3^{rd} digit 6 from dividend 196
\begin{array}{l}\phantom{14)}014\phantom{6}\\14\overline{)196}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)9}56\\\phantom{14)}\underline{\phantom{9}56\phantom{}}\\\phantom{14)999}0\\\end{array}
Find closest multiple of 14 to 56. We see that 4 \times 14 = 56 is the nearest. Now subtract 56 from 56 to get reminder 0. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }0
Since 0 is less than 14, stop the division. The reminder is 0. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}