Evaluate
\frac{1954}{365}\approx 5.353424658
Factor
\frac{2 \cdot 977}{5 \cdot 73} = 5\frac{129}{365} = 5.353424657534247
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)1954}\\\end{array}
Use the 1^{st} digit 1 from dividend 1954
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)1954}\\\end{array}
Since 1 is less than 365, use the next digit 9 from dividend 1954 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)1954}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1954
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)1954}\\\end{array}
Since 19 is less than 365, use the next digit 5 from dividend 1954 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)1954}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1954
\begin{array}{l}\phantom{365)}000\phantom{6}\\365\overline{)1954}\\\end{array}
Since 195 is less than 365, use the next digit 4 from dividend 1954 and add 0 to the quotient
\begin{array}{l}\phantom{365)}000\phantom{7}\\365\overline{)1954}\\\end{array}
Use the 4^{th} digit 4 from dividend 1954
\begin{array}{l}\phantom{365)}0005\phantom{8}\\365\overline{)1954}\\\phantom{365)}\underline{\phantom{}1825\phantom{}}\\\phantom{365)9}129\\\end{array}
Find closest multiple of 365 to 1954. We see that 5 \times 365 = 1825 is the nearest. Now subtract 1825 from 1954 to get reminder 129. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }129
Since 129 is less than 365, stop the division. The reminder is 129. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}