Evaluate
\frac{1092}{995}\approx 1.097487437
Factor
\frac{2 ^ {2} \cdot 3 \cdot 7 \cdot 13}{5 \cdot 199} = 1\frac{97}{995} = 1.0974874371859296
Share
Copied to clipboard
975\times 3\times \frac{2}{200\times 199}+\frac{195\times 194}{200\times 199}
Multiply 195 and 5 to get 975.
2925\times \frac{2}{200\times 199}+\frac{195\times 194}{200\times 199}
Multiply 975 and 3 to get 2925.
2925\times \frac{2}{39800}+\frac{195\times 194}{200\times 199}
Multiply 200 and 199 to get 39800.
2925\times \frac{1}{19900}+\frac{195\times 194}{200\times 199}
Reduce the fraction \frac{2}{39800} to lowest terms by extracting and canceling out 2.
\frac{2925}{19900}+\frac{195\times 194}{200\times 199}
Multiply 2925 and \frac{1}{19900} to get \frac{2925}{19900}.
\frac{117}{796}+\frac{195\times 194}{200\times 199}
Reduce the fraction \frac{2925}{19900} to lowest terms by extracting and canceling out 25.
\frac{117}{796}+\frac{39\times 97}{20\times 199}
Cancel out 2\times 5 in both numerator and denominator.
\frac{117}{796}+\frac{3783}{20\times 199}
Multiply 39 and 97 to get 3783.
\frac{117}{796}+\frac{3783}{3980}
Multiply 20 and 199 to get 3980.
\frac{585}{3980}+\frac{3783}{3980}
Least common multiple of 796 and 3980 is 3980. Convert \frac{117}{796} and \frac{3783}{3980} to fractions with denominator 3980.
\frac{585+3783}{3980}
Since \frac{585}{3980} and \frac{3783}{3980} have the same denominator, add them by adding their numerators.
\frac{4368}{3980}
Add 585 and 3783 to get 4368.
\frac{1092}{995}
Reduce the fraction \frac{4368}{3980} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}