Evaluate
\frac{193}{65}\approx 2.969230769
Factor
\frac{193}{5 \cdot 13} = 2\frac{63}{65} = 2.9692307692307693
Share
Copied to clipboard
\begin{array}{l}\phantom{65)}\phantom{1}\\65\overline{)193}\\\end{array}
Use the 1^{st} digit 1 from dividend 193
\begin{array}{l}\phantom{65)}0\phantom{2}\\65\overline{)193}\\\end{array}
Since 1 is less than 65, use the next digit 9 from dividend 193 and add 0 to the quotient
\begin{array}{l}\phantom{65)}0\phantom{3}\\65\overline{)193}\\\end{array}
Use the 2^{nd} digit 9 from dividend 193
\begin{array}{l}\phantom{65)}00\phantom{4}\\65\overline{)193}\\\end{array}
Since 19 is less than 65, use the next digit 3 from dividend 193 and add 0 to the quotient
\begin{array}{l}\phantom{65)}00\phantom{5}\\65\overline{)193}\\\end{array}
Use the 3^{rd} digit 3 from dividend 193
\begin{array}{l}\phantom{65)}002\phantom{6}\\65\overline{)193}\\\phantom{65)}\underline{\phantom{}130\phantom{}}\\\phantom{65)9}63\\\end{array}
Find closest multiple of 65 to 193. We see that 2 \times 65 = 130 is the nearest. Now subtract 130 from 193 to get reminder 63. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }63
Since 63 is less than 65, stop the division. The reminder is 63. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}