Evaluate
\frac{16}{9}\approx 1.777777778
Factor
\frac{2 ^ {4}}{3 ^ {2}} = 1\frac{7}{9} = 1.7777777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{1080)}\phantom{1}\\1080\overline{)1920}\\\end{array}
Use the 1^{st} digit 1 from dividend 1920
\begin{array}{l}\phantom{1080)}0\phantom{2}\\1080\overline{)1920}\\\end{array}
Since 1 is less than 1080, use the next digit 9 from dividend 1920 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}0\phantom{3}\\1080\overline{)1920}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1920
\begin{array}{l}\phantom{1080)}00\phantom{4}\\1080\overline{)1920}\\\end{array}
Since 19 is less than 1080, use the next digit 2 from dividend 1920 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}00\phantom{5}\\1080\overline{)1920}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1920
\begin{array}{l}\phantom{1080)}000\phantom{6}\\1080\overline{)1920}\\\end{array}
Since 192 is less than 1080, use the next digit 0 from dividend 1920 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}000\phantom{7}\\1080\overline{)1920}\\\end{array}
Use the 4^{th} digit 0 from dividend 1920
\begin{array}{l}\phantom{1080)}0001\phantom{8}\\1080\overline{)1920}\\\phantom{1080)}\underline{\phantom{}1080\phantom{}}\\\phantom{1080)9}840\\\end{array}
Find closest multiple of 1080 to 1920. We see that 1 \times 1080 = 1080 is the nearest. Now subtract 1080 from 1920 to get reminder 840. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }840
Since 840 is less than 1080, stop the division. The reminder is 840. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}