Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

192.02=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=192.02
Swap sides so that all variable terms are on the left hand side.
t^{2}=192.02\times \frac{10}{49}
Multiply both sides by \frac{10}{49}, the reciprocal of \frac{49}{10}.
t^{2}=\frac{9601}{245}
Multiply 192.02 and \frac{10}{49} to get \frac{9601}{245}.
t=\frac{\sqrt{48005}}{35} t=-\frac{\sqrt{48005}}{35}
Take the square root of both sides of the equation.
192.02=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=192.02
Swap sides so that all variable terms are on the left hand side.
\frac{49}{10}t^{2}-192.02=0
Subtract 192.02 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times \frac{49}{10}\left(-192.02\right)}}{2\times \frac{49}{10}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{49}{10} for a, 0 for b, and -192.02 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times \frac{49}{10}\left(-192.02\right)}}{2\times \frac{49}{10}}
Square 0.
t=\frac{0±\sqrt{-\frac{98}{5}\left(-192.02\right)}}{2\times \frac{49}{10}}
Multiply -4 times \frac{49}{10}.
t=\frac{0±\sqrt{\frac{470449}{125}}}{2\times \frac{49}{10}}
Multiply -\frac{98}{5} times -192.02 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{0±\frac{7\sqrt{48005}}{25}}{2\times \frac{49}{10}}
Take the square root of \frac{470449}{125}.
t=\frac{0±\frac{7\sqrt{48005}}{25}}{\frac{49}{5}}
Multiply 2 times \frac{49}{10}.
t=\frac{\sqrt{48005}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{48005}}{25}}{\frac{49}{5}} when ± is plus.
t=-\frac{\sqrt{48005}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{48005}}{25}}{\frac{49}{5}} when ± is minus.
t=\frac{\sqrt{48005}}{35} t=-\frac{\sqrt{48005}}{35}
The equation is now solved.