Evaluate
\frac{96}{5}=19.2
Factor
\frac{2 ^ {5} \cdot 3}{5} = 19\frac{1}{5} = 19.2
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)192}\\\end{array}
Use the 1^{st} digit 1 from dividend 192
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)192}\\\end{array}
Since 1 is less than 10, use the next digit 9 from dividend 192 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)192}\\\end{array}
Use the 2^{nd} digit 9 from dividend 192
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)192}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}9\\\end{array}
Find closest multiple of 10 to 19. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 19 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)192}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}92\\\end{array}
Use the 3^{rd} digit 2 from dividend 192
\begin{array}{l}\phantom{10)}019\phantom{6}\\10\overline{)192}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}92\\\phantom{10)}\underline{\phantom{9}90\phantom{}}\\\phantom{10)99}2\\\end{array}
Find closest multiple of 10 to 92. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 92 to get reminder 2. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }2
Since 2 is less than 10, stop the division. The reminder is 2. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}