Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)192}\\\end{array}
Use the 1^{st} digit 1 from dividend 192
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)192}\\\end{array}
Since 1 is less than 144, use the next digit 9 from dividend 192 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)192}\\\end{array}
Use the 2^{nd} digit 9 from dividend 192
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)192}\\\end{array}
Since 19 is less than 144, use the next digit 2 from dividend 192 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)192}\\\end{array}
Use the 3^{rd} digit 2 from dividend 192
\begin{array}{l}\phantom{144)}001\phantom{6}\\144\overline{)192}\\\phantom{144)}\underline{\phantom{}144\phantom{}}\\\phantom{144)9}48\\\end{array}
Find closest multiple of 144 to 192. We see that 1 \times 144 = 144 is the nearest. Now subtract 144 from 192 to get reminder 48. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }48
Since 48 is less than 144, stop the division. The reminder is 48. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}