Evaluate
\frac{1913}{198}\approx 9.661616162
Factor
\frac{1913}{2 \cdot 3 ^ {2} \cdot 11} = 9\frac{131}{198} = 9.66161616161616
Share
Copied to clipboard
\begin{array}{l}\phantom{198)}\phantom{1}\\198\overline{)1913}\\\end{array}
Use the 1^{st} digit 1 from dividend 1913
\begin{array}{l}\phantom{198)}0\phantom{2}\\198\overline{)1913}\\\end{array}
Since 1 is less than 198, use the next digit 9 from dividend 1913 and add 0 to the quotient
\begin{array}{l}\phantom{198)}0\phantom{3}\\198\overline{)1913}\\\end{array}
Use the 2^{nd} digit 9 from dividend 1913
\begin{array}{l}\phantom{198)}00\phantom{4}\\198\overline{)1913}\\\end{array}
Since 19 is less than 198, use the next digit 1 from dividend 1913 and add 0 to the quotient
\begin{array}{l}\phantom{198)}00\phantom{5}\\198\overline{)1913}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1913
\begin{array}{l}\phantom{198)}000\phantom{6}\\198\overline{)1913}\\\end{array}
Since 191 is less than 198, use the next digit 3 from dividend 1913 and add 0 to the quotient
\begin{array}{l}\phantom{198)}000\phantom{7}\\198\overline{)1913}\\\end{array}
Use the 4^{th} digit 3 from dividend 1913
\begin{array}{l}\phantom{198)}0009\phantom{8}\\198\overline{)1913}\\\phantom{198)}\underline{\phantom{}1782\phantom{}}\\\phantom{198)9}131\\\end{array}
Find closest multiple of 198 to 1913. We see that 9 \times 198 = 1782 is the nearest. Now subtract 1782 from 1913 to get reminder 131. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }131
Since 131 is less than 198, stop the division. The reminder is 131. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}