Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 19075 with 6. Write the result 114450 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\phantom{\times99}152600\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 19075 with 8. Write the result 152600 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\phantom{\times99}152600\phantom{9}\\\phantom{\times9999999}0\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 19075 with 0. Write the result 0 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\phantom{\times99}152600\phantom{9}\\\phantom{\times9999999}0\phantom{99}\\\phantom{\times}114450\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 19075 with 6. Write the result 114450 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\phantom{\times99}152600\phantom{9}\\\phantom{\times9999999}0\phantom{99}\\\phantom{\times}114450\phantom{999}\\\underline{\phantom{\times}57225\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 19075 with 3. Write the result 57225 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}19075\\\underline{\times\phantom{9999}36086}\\\phantom{\times999}114450\\\phantom{\times99}152600\phantom{9}\\\phantom{\times9999999}0\phantom{99}\\\phantom{\times}114450\phantom{999}\\\underline{\phantom{\times}57225\phantom{9999}}\\\phantom{\times}688340450\end{array}
Now add the intermediate results to get final answer.