Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

190=x^{2}+9x
Use the distributive property to multiply x+9 by x.
x^{2}+9x=190
Swap sides so that all variable terms are on the left hand side.
x^{2}+9x-190=0
Subtract 190 from both sides.
x=\frac{-9±\sqrt{9^{2}-4\left(-190\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and -190 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-190\right)}}{2}
Square 9.
x=\frac{-9±\sqrt{81+760}}{2}
Multiply -4 times -190.
x=\frac{-9±\sqrt{841}}{2}
Add 81 to 760.
x=\frac{-9±29}{2}
Take the square root of 841.
x=\frac{20}{2}
Now solve the equation x=\frac{-9±29}{2} when ± is plus. Add -9 to 29.
x=10
Divide 20 by 2.
x=-\frac{38}{2}
Now solve the equation x=\frac{-9±29}{2} when ± is minus. Subtract 29 from -9.
x=-19
Divide -38 by 2.
x=10 x=-19
The equation is now solved.
190=x^{2}+9x
Use the distributive property to multiply x+9 by x.
x^{2}+9x=190
Swap sides so that all variable terms are on the left hand side.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=190+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=190+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{841}{4}
Add 190 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{841}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{29}{2} x+\frac{9}{2}=-\frac{29}{2}
Simplify.
x=10 x=-19
Subtract \frac{9}{2} from both sides of the equation.